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Abstract. The concept of forwards-nested multiplication is used to develop a unified power 
series-Hill determinant method for the calculation of Schrodinger-equation energy levels. 
A numerical application is made to the exponential cosine screened potential. 

1. Introduction 

Some particular forms of the radial Schrodinger equation 

-a D2$ - Zr-’ U (  r ) $  = Et,!/ (1) 

with U ( r )  = exp(-pr) cos A r  have been the subject of many numerical calculations. 
The Yukawa potential, with A = 0, p > 0, has been treated by Rayleigh-Schrodinger 
theory and  Pad6 approximants (Lai 1981, Vrscay 1986), by a scaling-variational 
approach (Gerry and  Laub 1985), by a Z - ’  expansion method (Iafrate and  Mendelsohn 
1969) and by the Ecker-Weizel approximation (Dutt er al 1981). The exponential 
cosine screened Coulomb potential, with A = p > 0, has been treated by perturbation 
theory with A as the perturbation parameter (Lai 1982, Kay and Ray 1981), by 
perturbation theory based on the HulthCn potential (Lam and Varshni 1972, Bessis er 
a1 1975), by an  algebraic perturbation method (Roychoudhury and Roy 1985) and by 
the Ecker-Weizel approximation (Ray and  Ray 1980). The case A f p was treated by 
Fack et al (1986) using an  algebraic perturbation method. 

The present work sets out a very simple dual-purpose method for calculating the 
energy eigenvalues of equation (1); the calculation can be used either in a Hill 
determinant mode (with the boundary conditions $ ( O )  = +(CO) = 0) or in a power series 
mode with 4 ( 0 )  = $ ( L )  = 0 for some finite L ) .  Section 2 sets out the basic equations 
of the method. Section 3 discusses the link between the power series and Hill deter- 
minant approaches to eigenvalue calculation and  0 4 presents some typical numerical 
results. Section 5 comments on further applications of the methods described in this 
work. 

2. The basic recurrence relations 

A key feature which makes the calculations of this work tractable on a microcomputer 
is the fact that both the potential and the wavefunction have rapidly convergent power 
series expansions with coefficients which obey a recurrence relation. The function 
U ( r )  = exp(-pr )  cos Ar may quickly be shown to obey the differential equation 

(2) U” + 2 p  U + ( p + A ’) U = 0. 
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If we construct the power series solution 

where K is a numerical scaling factor (for computational convenience) we find by 
inspection that U ( 0 )  = 1, U(1) = - p K  and that the rest of the U ( m )  follow from the 
recurrence relation 

(4) 

Thus the power series expansion of the potential in the Schrodinger equation (1) can 
be computed rapidly to a large number of terms. 

We now study the regular series solutions of a radial Schrodinger equation in which 
the potential is represented by a convergent power series 

( m  + l ) (m +2)  U(m + 2 )  + 2 p ( m  + l ) K U ( m  + 1)+ K 2 ( p 2 +  A * )  U (  m )  = 0. 

X 

-aD2J,  +I V(m)r"J ,+  al( l+ l ) r - * J ,  = E$. (5 )  
- 1  

Equation (5 )  is usually thought of as being the equation for the radial wavefunctions 
associated with states of angular momentum I in three dimensions. However, equation 
( 5 )  and hence the methods of this work can also be applied to states of generalised 
angular momentum A in N dimensions; all that is required is to use the numerical 
value I =:(2A+ N - 3 )  in the r--* term of equation ( 5 )  (Killingbeck 1985a). 

The regular solution for equation (5 )  is postulated to take the form 
X 

J, = exp( - p r )  c A( n)rn+'+ '  ( 6 )  
0 

where p > 0 is an adjustable convergence parameter. 
From equations ( l ) ,  ( 3 )  and ( 5 )  we can see that the relation 

V ( m ) =  -ZU(m+l)K-"+" (7) 
holds. To simplify the equations and computations we introduce the definition 

A ( n ) = B ( n ) K - " .  (8)  
When ( 6 )  is substituted into (5 )  we finally obtain the recurrence relation 

( n  + 2 1 + 3 ) (  n + 2 ) B (  n + 2 )  - 2 P K (  n + I +  2)B(  n + 1) + K 2 ( P 2 +  E a - ' ) B (  n )  
n 

- a - ' Z K  U ( m + l ) B ( n - m ) = O .  (9) 
-1  

For a given trial E we use the initial conditions B( n )  = 0 for n < 0, together with an 
arbitrary B ( 0 )  value, to compute the B ( n )  for n > O .  The A(n)  usually fall off rapidly 
at high n, but the B ( n )  do not fall off so rapidly if K is given a value greater than 
unity; the value K = 4  has been used for most of the calculations carried out so far 
by the methods reported here. Similarly, the presence of K in equation ( 7 )  produces 
non-zero U ( m )  values at high m, where the original V ( m )  would be below the 
microcomputer underflow level. 

3. The Hill determinant and power series approaches 

The procedure which makes it possible to include both a Hill determinant and a power 
series calculation in one uniform algorithm is the forwards-nested multiplication 
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procedure devised by Killingbeck (1985b). The traditional nested-multiplication 
algorithm attacks the problem of evaluating a sum of form 

by starting from the top  end (i.e. n = N )  and using the steps 

S(0) = A( N )  (11) 
S ( n  + 1) = x S ( n ) + A ( N  - 1 - n )  (12) 

$(x) = S( N + 1). (13) 
However, we usually compute power series with the lower A ( n )  taken first. To find 
the effect of adding an  extra term A( N + 1)x"" using the traditional algorithm involves 
starting at the top  and  working down again. If, however, we rewrite (10) in the form 

n 2 O  

with 

N 

+ ( x ) = x N  C A ( N - n ) y "  = x N F ( N )  
0 

(14) 

with y = x - ' ,  then the algorithm to compute the factor F (  N )  clearly takes the form 

F ( 0 )  = A ( 0 )  (15) 
F ( n  + 1) = y F ( n )  + A (  n + 1) (16) 

which permits an  easy calculation of the effect of adding one more term to the series. 
In the present work a further simplification results; we wish to compute only the ratios 
of two $(x) values, with N and x the same for both but with different coefficients 
A( n ) .  This means that the factor x N  in (14) can be omitted, so that the sum F (  N )  is 
all that needs to be calculated to represent + ( x ) .  

The method of calculation in the power series approach (Secrest et a1 1962, 
Killingbeck 1981) is to assign a trial E value and to sum the power series for the 
wavefunction + ( x )  at a fixed x value, x = L, varying E to search for a zero of $ ( L ) .  
The resulting E values are eigenvalues appropriate to the Dirichlet boundary condition 
+ ( L )  = 0. The preceding discussion shows that if we use a fixed large number N of 
terms of the series then we can represent + ( L )  by a sum which is computed using the 
recurrence relation (16), so that y = L-' becomes the relevant spatial variable. To 
compute eigenvalues in the limit L+ 00 we set y = 0 in (16), which then shows that the 
quantity to be studied and  rendered zero as a function of E is the coefficient A ( N )  
alone rather than the sum of the series. Ginsburg (1982) noted empirically that a 'zero 
coefficient' test served to produce eigenvalues for power series potentials and Kok 
(1987) used it for a Yukawa potential with very small p ( p  < 0.01). Killingbeck (1985a) 
showed that the zero coefficient test is equivalent to the use of the Hill determinant 
approach. The arguments presented in the present work thus show that the Hill 
determinant method can be regarded as arising naturally within the formalism of the 
power series method. The relationship between the Hill determinant method and  the 
inner product method for eigenvalue calculation is discussed by Killingbeck (1987a). 

n z O  

4. Some specimen results 

The numerical calculations are carried out using a combination of the ideas of 00 2 
and 3. The recurrence relation (4) is used to compute a large number of the coefficients 
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U ( n )  which represent the potential for the specified p and A values. Then, for a 
specified x value x = L, the recurrence relation (9) is used (typically with B ( 0 )  = lo3’) 
to compute the B ( n )  up  to the value n = N for some fixed large integer N (typically 
ranging from 20 up  to 60) and some trial E value. The quantities F ( n )  are simul- 
taneously calculated using the initial value F ( 0 )  = B ( 0 )  and the recurrence relation 

F ( n  + 1) = ( K / L ) F ( n ) +  B ( n  + 1)  (17) 

which is the appropriate version of (16) when we allow for the scaling factor K in the 
definitions. The trial energy E + A  (with A typically is next used, giving a different 
F (  N ) .  From the two F (  N )  values a linear extrapolation gives an  estimated energy E P  
which would have made F ( N )  zero. E P  then becomes the new E estimate for the 
next cycle of the process, until the E value has converged. The computational procedure 
is essentially a finite difference simulation of Newton’s method which avoids explicit 
differentiation (Killingbeck 1985b). To obtain the Hill determinant results the calcula- 
tion is performed with L set at a very large value (e.g. L =  10”) so that F and B 
become equivalent in (17). At each N value (and  for fixed L and I )  a sequence of 
eigenvalues results. As N is increased the lower eigenvalues stabilise to limiting values 
which can be taken as the eigenvalues for the Schrodinger equation. We checked a 
selection of results for a variety of p and A values in the references cited in § 1 and  
obtained good agreement (or improvement). We regard our results as accurate to the 
number of digits quoted. The results in table 1 for A = p = 0.05 differ in the last few 
digits from those of de  Meyer et a1 (1985) and of Roy and Choudhury (1985). The 
agreement between the results of those two earlier approximate calculations arises 
because both works involved neglect of the same off -diagonal matrix elements, as 
indicated by de  Meyer et a1 (1985). For the results displayed in tables 1-3 we should 
note that only about twenty terms of the power series for the potential (actually the 
U coefficients) registered as non-zero on the microcomputer employed. Deleting the 
last few non-zero coefficients makes a negligible change in the eigenvalues, indicating 
that the coefficients used are sufficient to represent the potential function correctly; 
this favourable circumstance is presumably brought about by the rapid convergence 
of the power series for both the potential and the wavefunction. For very weakly 
bound states, with E just below zero, the value of N required to obtain full convergence 
of the energy may rise to around 100; however, numerical experiments showed that 
good estimates of E can be found by simple Aitken extrapolation based on three 
successive E values (e.g., at N=50 ,  55, 601, thus cutting down on the required 

Table 1. Some results for a =;, Z =  1 ,  showing the N value required for convergence ( a s  
judged by comparing results at N and N + 5). p = 1 throughout. 

hi State (0.05,O) (0, 0.05) (0.05, 0.05) 

20 Is -0.451 81643 -0.498 129 26 -0.450 117 47 
40 2s -0.081 771 20 -0.1 17 675 77 -0.076 449 60 

-0.080 740 39 -0.1 18 887 67 -0.076 059 01 
60 3s -0.019 352 55 -0.040 204 57 -0.01 1 5’75 56 
60 3p -0.018 557 75 -0.041 310 45 -0.010 929 34 
60 3d -0.016915 57 -0.043 45 1 2 1 -0.009 554 89 

40 2p 

dP/PS 2.066 1.936 2.127 
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computing time and on rounding errors. Table 1 shows some specimen results for the 
six lowest energy levels. 

In  the theory of atomic energy levels (Condon and Shortley 1953) the energies 
E ( ] )  in an LSJ multiplet with weak spin-orbit coupling are proportional to J ( J +  l ) ,  
so that the energy gap E ( 2 ) - E ( l )  is twice as large as the energy gap E( l ) -E(O) .  
This well known interval rule of atomic spectroscopy has an analogue in the results 
of table 1 .  The energy gap ratio for the states with n = 3 obeys the interval rule 
dp/ps  > 2, but for the case p = 0, A = 0.05 the order of the levels is inverted. At first 
sight it might seem that for small splittings a first-order theory with C U I (  I + l ) F 2  regarded 
as a perturbation would explain the interval rule. However, such a positive-definite 
perturbation would not give an inverted level order. Table 2 shows some results which 
we obtained by exploiting the fact that 1 does not have to be an integer in the algorithms 
of this paper. The results show that the 2p energy arises from the 1s energy (not the 
2s energy) as 1 varies from 0 to 1, so it is incorrect to regard the 2p energy as derivable 
from the 2s energy by using the centrifugal potential as a perturbation. Similarly we 
have the correlations 1s + 3d, 2s + 3p, which lead to similar conclusions for the n = 3 
levels. The correct explanation of the interval rule seems to us to arise from the fact 
that the hydrogenic degeneracy is being broken by a potential which (for small p and 
A )  is dominated by the rO, r and r’ terms. Both ( r )  and (r’) for hydrogenic orbitals 
equal I-independent terms plus a term proportional to l ( I +  1) (Condon and Shortley 
1953), so that the interval rule still holds for small splittings but the sign of the splittings 
depends on the coefficients of r and r2 in the potential. 

Table 2. Energq eigenvalues as  a function of /, showing the evolution of the 2p energy 
from the Is energy. N = 50, @ = 1 and  L = IO”’ throughout.  

/ 

0.0 

0.4 

0.8 
1 .o 
El?SJ 

0.2  

0.6 

(0,O) (0 ,0.05)  (0.05, 0) 

-0.500 000 00 -0.498 129 26 -0.451 816 43 
-0.347 222 22  -0.344 682 68 -0.299 669 44 
-0.255 102 04 -0.251 799 65 -0.208 260 77 
-0.195 312 50 -0.191 15688 -0.149 259 66 
-0.154 320 99 -0.149 226 66 -0.109 129 83 
-0.125 00000 -0.1 18 887 67 -0,080 740 39 
-0.125 000 00 -0,117 675 77 -0.081 771 20 

Table 3 illustrates how the method of this work can be used to show the dependence 
of energy levels on the value of the bounding coordinate L. Clearly the spatially more 
compact ground state reaches its limiting energy more quickly than d o  the excited 
states. Table 4 shows some specimen results for the 3s state which show that (for this 
case) the 3s eigenfunction must have nodes at x -6.88 and x -  1.88, since at these L 
values the Dirichlet problem gives an energy level at the same energy as that of the 
3s state for the limit L + X. We note that each indiuidual energy level falls monotonically 
as L increases, but in the critical regions shown in table 4 diflerent states have energies 
passing through the particular E (3s )  value. For example, close to L =  1.88 the lowest 
level for the boundary condition &( L )  = 0 agrees with the third level for the boundary 
condition $ ( x ) = O .  A more direct way to find the node positions is to find E ( 3 s ) ,  
hold E fixed at that value, and then compute F ( N )  for some large N and with x 
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Table 3. Variation of energy with L for the case a = f ,  Z = 1, p = 0, A = 0.05. p = 1 and 
N = 50 throughout. 

State 
~~~ 

L 1s 2s 2P 

10 -0.451 815 62 -0.068 550 64 -0.073 903 65 
15 -0.451 81643 -0.081 126 75 -0.080 429 25 
20 -0.451 81643 -0.081 749 44 -0.080 730 50 
1 O’O -0.451 816 43 -0.081 771 20 -0.080 740 39 

Table 4. Typical results to indicate node positions for the 3s state with CY = i, Z = 1, p = 0, 
A = 0.05. p = 1 and N = 50 throughout. 

L E Level 

1 020 -0.040 204 57 
7.00 -0.046 494 11 
6.90 -0.041 887 27 
6.80 -0.036 968 5 5  
1.90 -0.053 024 56 
1.89 -0.045 133 96 
1.88 -0.037 083 86 

3rd 
2nd 
2nd 
2nd 
1 St 

1st 
1st 

being gradually increased; a sign change in F ( N )  then indicates that x has passed 
through a node in the eigenfunction. The value of the parameter p was not found to 
be too crucial; for the results reported here any value between roughly 0.2 and 1.5 
gave reasonable convergence in N. 

5. Further applications 

The methods described in this work can easily be adapted to deal with any radial 
potential with a rapidly converging power series which satisfies a differential equation; 
the potential -A exp(-Ar2) discussed by Lai (1983) falls into this category. The method 
can obviously be applied to problems for which the potential is a finite polynomial; 
e.g., the confined oscillator problems which Fernandez and Castro (1981) treated using 
a hypervirial technique. Killingbeck ( 1987b) has recently developed a shooting-relaxa- 
tion method to calculate the Zeeman energy levels for a Coulomb potential; that 
method in principle will work for any radial power series potential and so should 
permit the calculation of Zeeman energy levels for the family of potentials studied in 
the present work. The phenomenon of ‘false’ eigenvalues (Killingbeck 1986) can be 
demonstrated for the calculations of this work; for example, the use of the value p = -1 
instead of p = 1 in the reported calculations leads to different energies. These are 
actually energies for a partner potential in which the sign is reversed for the odd 
powers of r in the power series; for this case the partner potential is 
Zr-‘ exp(pr) cos(Ar). Although energy levels are displayed in the present paper, the 
calculation of expectation values such as ( r “ )  can be carried out using the techniques 
developed by Killingbeck (1985~) .  
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